侵权投诉
订阅
纠错
加入自媒体

混合菌修复石油污染土壤的方案

2014-07-06 00:33
潇纵
关注

  2.3培养条件优化实验

  采用U14(148)均匀设计表进行实验,研究各培养条件对石油降解率的影响。U14(148)均匀设计的实验方案和结果见表3。其中:U1为混合菌接种量,U2为土壤含水率,U3为鸡粪加入量,U4为麦糠加入量,U5为表面活性剂加入量。

  U14(148)均匀实验数据的处理采用UniformDesign2.10软件,得出回归方程见式(2)。

  方差分析表中显著性水平为0.001<0.01,回归方程变量间关系是极显著的。菌群的最优培养条件为:混合菌接种量122.0mL/kg、土壤含水率14%(w)、鸡粪加入量90g/kg、麦糠加入量150g/kg和表面活性剂加入量22mL/kg,预测最高石油降解率为67.35%。在最优培养条件下进行验证实验,石油降解率为66.95%,与预测结果的误差为0.59%。实验值与预测值的误差在允许范围之内,说明均匀设计优化的菌群培养条件准确可信。

  2.4 微生物修复前后土壤性质的对比

  分别将未经处理的模拟土样、经土著微生物通风堆肥法处理的模拟土样、经混合菌处理(最佳配比及最优培养条件下)的模拟土样记作M1,M2,M3,考察微生物修复前后土壤理化性质、酶活性和微生物种群数量的变化。经过不同处理的模拟土样的性质见表4。

  由表4可见,M3的修复效果最好,石油降解率达66.95%,而M2的石油降解率仅为5.02%。由于M3在修复过程中投入了大量的营养物质,因此土样中有机质和总氮含量大幅提高;而M2的各指标变化则不如M3的明显。M3中脱氢酶和过氧化氢酶活性最高,这是由于在修复过程中土壤微生物大量繁殖,微生物参与了石油烃的降解过程,使得脱氢酶和过氧化氢酶活性提高。M3中的脲酶活性最高,说明土壤的氮元素转化能力强,有利于土壤中微生物的生长,为微生物参与石油烃的降解提供了充足的营养条件。而M2中各种酶活性的变化均不如M3中明显。M3在细菌、放线菌和真菌的数量方面均明显高于M1和M2,接近于自然界中实际的微生物数量。

  3、结论

  a)实验室保藏的A,B,C,D4种高效石油降解菌均可提高微生物修复石油污染土壤的效果。单菌在40d修复过程中的修复效果远远超出土著微生物,且4种单菌石油降解率的高低顺序为:D>C>A>B。

  b)4种菌混合除油的效果最好,在最佳配比(X1=12%,X2=2%,X3=21%,X4=65%)条件下,40d后土壤的石油降解率达54.50%。

  c)菌群的最优培养条件为:混合菌接种量122.0mL/kg、土壤含水率14%(w)、鸡粪加入量90g/kg、麦糠加入量150g/kg和表面活性剂加入量22mL/kg;在此条件下,40d后土壤的石油降解率达66.95%。

  d)经混合菌修复的石油污染土壤,其肥力明显升高,脱氢酶、过氧化酶和脲酶的活性均升高,微生物数量也有明显增加。

<上一页  1  2  3  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号